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Abstract

Ablation is the main therapy to control Atrial Fibrilla-
tion (AF). However, the underlying mechanism for AF ini-
tiation and maintenance remains mostly unknown and rep-
resent a major challenge. ECG Imaging (ECGI) has been
presented to address this issue, but it is an ill-posed prob-
lem and presents several limitations. Many Deep Learn-
ing methods have been proposed for AF characterization,
but few provide a solution involving the location of the
AF driver. In this work, we propose finding the location
of AF drivers using Body Surface Potentials (BSPs) and
CNN-LSTM with an attention layer networks as a super-
vised classification problem. The AF driver was correctly
located the 94.42% of the time with an average Cohen’s
Kappa of 0.87. Hence, the proposed model could provide
an effective solution for identifying AF driver location for
ablation procedures as a non-invasive approach.

1. Introduction

Atrial Fibrillation (AF) is the most common sustained
cardiac rhythm disorder, and it is linked to increased
morbidity from thromboembolism, heart failure, ischemic
stroke, and a lower quality of life [1]. The prevalence of
AF is rising sharply in developed countries, indicating a
major health issue [2]. The most effective method to re-
store sinus rhythm, and consequently relieve the symp-
toms, involves catheter-based ablation through surgery [3].

It is known that there are multiple electric mechanisms
reported to initiate and maintain AF activity, such as atrial
wavelets, macroreentries and localized sources [4]. There-
fore, in order to effectively ablate these areas that sustain
the arrhythmia, it is essential to locate and characterize
them. AF drivers location can be accomplished through
invasive electrophysiological (EP) studies or non-invasive
methods [5]. With this aim, ECG Imaging (ECGI) tech-
niques have been proposed to locate AF drivers, although
this approach presents some limitations [6–8].

Machine Learning (ML) and Deep Learning (DL) have
disrupted healthcare by enabling more powerful and effec-
tive diagnosis and treatment techniques, such as AF char-
acterization and detection. Previous research has shown
the ability and potential DL yields for AF characterization
and detection [9–11].

We propose a hybrid form of CNN-LSTM with an atten-
tion layer, which enables feature extraction and sequential
data modeling, to find the region of the atria where the AF
driver is allocated using BSP signals [12, 13]. As a result,
we address the problem as a supervised classification task
using labeled realistic computerized AF and torso models.

2. Methods

2.1. Computerized Models

EGMs and BSPs were obtained employing one realis-
tic computerized model of atria geometry (N=2039 nodes)
and 10 models of torso geometry (M=659) [8,12,14], con-
sidering a simplified endocardium-epicardium layer for the
atrial tissue [15]. A total of 13 AF models were gener-
ated from multiple complexity propagation patterns and
driver locations. Given the experimental conditions, the
AF driver can be allocated in the following anatomical re-
gions: right atria (RA), left atria (LA) or no driver detec-
tion. The resulting signals, which ranged from 2 to 5 s,
were sampled at fs = 500Hz.

2.2. AF Driver Location as a classification
Problem

We propose to address the characterization of AF by lo-
cating its drivers as a supervised multi-class classification
problem. Hence, we divided the atria geometry into 2 re-
gions: Right Atria (RA) assigned as class 1, Left Atria
(LA) assigned as class 2 and assigning class 0 when no
driver is found. Each time instant of the BSP was assigned
one class from 0-2 following a manual labeling approach.
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Figure 1. CNN-LSTM architecture schematic overview

BSP signals were computed solving the forward prob-
lem of electrocardiography using each of the 10 torso mod-
els and 13 AF models. Following, signals were refer-
enced to the Wilson Central Terminal (WCT), corrupted
with Gaussian noise to 20 dB and filtered them using
a 4th-order bandpass Butterworth filter (fc1=3 Hz and
fc2=30Hz) [8,12]. Hence, 130 BSP models were obtained,
from which only 64 nodes were selected in order to simu-
late a realistic multi-electrode vest used in electrophysio-
logical studies.

2.3. Long-Short Term Memory Networks
(LSTM) Architectures and Attention
Mechanisms

RNN are a family of neural networks (NN) for sequence
data processing and modeling very popular among natu-
ral language processing and signal applications. Unlike
conventional NN, RNN enables an appropriate generaliza-
tion across the different samples of the signal [16]. LSTM
networks are a type of RNN that overcomes the major is-
sues conventional RNN encounters: difficulty to process
very long sequences. In contrast, LSTM networks include
mechanisms to selectively forget or update the information
that is propagated across the network [17].

In many tasks, attention mechanisms have become an
essential component of sequence modeling and transduc-
tion models, allowing modeling of dependencies regard-
less of their distance in the input or output sequences.
These attention techniques are often used in combination
with RNN or LSTM to maximize its performance [18].

2.4. Convolutional Neural Network (CNN)
Architectures

Commonly employed in computer vision, CNNs use
convolutional and pooling layers to extract spatial features
from input data. Various filters or kernels are convolved
to the input array in convolutional layers generating vari-
ous feature maps. The subsequent layer, the pooling layer,

reduces the spatial scale of the convolutional layer output.
Since these layers are frequently followed by a dense layer,
the output of the convolutional network must first be flat-
tened [19].

2.5. CNN-LSTM Architectures

CNN-LSTM models are hybrid architectures that com-
bine LSTM layers for time series classification with CNN
layers for feature extraction from input sequences. In or-
der to accomplish this task, the original sequence is divided
into smaller blocks that are fed to convolutional networks,
which will extract features from each of the subsequences.
The retrieved features from each block will then be inter-
preted by LSTM layers, enabling the sequence classifica-
tion.

We propose an architecture based on two main modules:
CNN and LSTM. The CNN module is comprised of two
subsequential 1D Time distributed convolutional layers of
32 filters followed by two max-pooling layers of size (5×
5) and (3 × 3). Then, the output of this module is passed
through a 30-unit LSTM layer and a self-attention layer
of size 10. Finally, the output is passed through a 3-unit
dense layer with a softmax activation function in order to
perform the classification. Furthermore, dropout layers are
added to avoid overfitting in the results.

2.6. Performance Metrics

Different metrics were utilized to measure the goodness
of the models globally (Accuracy) and by regions (Recall
and Precision)
• Accuracy (Acc). Used as a global metric, it yields the
proportion of correctly predicted driver regions to the total
observations:

Acc =
TP + TN

Total
(1)

• Cohen’s Kappa (κ). It is a robust statistic that aims to
rate reliability of results, computed as:

κ =
p0 − pe
1− pe

(2)
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where p0 is the relative agreement among raters (identi-
cal to accuracy), and pe is the the hypothetical probability
of chance agreement. As a result, a score of 1 denotes
complete agreement amongst raters, whereas a score of 0
denotes the level of agreement that would be predicted by
chance alone.
• Recall (or True positive rate, TPR). It represents the per-
centage of positive drivers for a given region that are cor-
rectly classified:

Recall =
TP

TP + FN
(3)

• Precision. It provides an insight on of all drivers clas-
sified in a region, how many are actually located in that
region:

Precision =
TP

TP + FP
(4)

where TP (true positives), FP (false positive), TN (true
negatives) and FN (false negatives).

2.7. Experimental set-up

The final feature dataset consists of 120 AF models and
one sinus rhythm model arranged sequentially into a ma-
trix with size (29,000 time instants × 64 nodes). Addition-
ally, for every time instant of the signals, one class (1 or 2
for the corresponding atria region or 0 if there is no driver)
is included in the labels’ array. Morever, BSPs were down-
sampled to fs = 50Hz to avoid feeding the network with
redundant batches, since AF spectral activity is bounded
between 2.5 and 25 Hz [20].

A 4-fold cross validation scheme was developed to vali-
date the results aiming to accomplish statistic significance.
Each BSP signal was divided into train and test batches
of 50 samples each, to preserve temporal correlation. The
mean and standard deviation of the 4-folds are used to cal-
culate the final performance of the models.

3. Results

The obtained results show an average accuracy of
0.944 ± 0.043 and a mean Cohen’s Kappa of 0.87 in the
test set, indicating a very satisfactory overall performance
and little variation between folds. The confusion matrix
depicted in Figure 2 shows the average and standard de-
viation of the normalized count of true and predicted in-
stances in the 4-folds. Although the 3 regions provide ex-
cellent performance, the results are better when detecting
LA drivers.

Attending to the results by region depicted in Figure 3,
the class which presents the highest positive predictive
value with the slightest deviation among folds is LA, al-
though the three classes show very high values. It is impor-
tant to take into account the high cost associated to do not

Figure 2. Confusion matrix obtained for the test set and
the 4-folds

detecting the driver’s location correctly, which in practice
may result in an inappropriate ablation of the endocardium
and the persistence of the arrhythmia. On the opposite, an-
alyzing the precision, the class which presents the largest
variance among folds is LA, which may be due to imbal-
ance in the dataset.

4. Discussion and conclusions

The proposed CNN-Attention LSTM methodology
could outperform the current solutions for AF driver de-
tection based on ECGI. This method has provided very
promising results for three regions of the atria and 20 dB
noise level.

However, this model entails some limitations that must
be overcome. The major drawback is the scarce data: only
13 AF models, 10 torso geometries, and one atrial geom-
etry are used in this study. Hence, the 130 resulting BSPs
sets may not be enough to provide an adequate generaliza-
tion, since some underlying leakage may occur. Therefore,
it is essential to incorporate more models and geometries
which may enable the configuration of some other vali-
dation schemes: cross-validation by AF model or by ge-

Figure 3. Average and standard deviation of the recall and
precision obtained for each class
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ometries. Additionally, more data would signify a more
balanced and stratified dataset in terms of the labels.

Regarding some future work research lines, we consider
increasing significantly the number of regions to provide a
more accurate and precise location of the driver. Further-
more, real patient data could be employed to validate the
results, although tagging the real models may be challeng-
ing from a clinical and technical point of view. Moreover,
the project scope aims to characterize AF driver location,
for which EGM regression based on BSPs will be investi-
gated through more complex Deep Learning approaches.
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